2,618 research outputs found

    The correlation between resting EEG power and nonattachment scale

    Get PDF
    E-Poster: no. 4453INTRODUCTION: Psychological activity is supported by the brain electronic activity, to some extent, recorded by electroencephalography (EEG) (Davidson, et al., 2000). Therefore, it is plausible that some psychological measurements could be correlated with EEG measurements. For example, previous studies have shown that patterns of the frontal and posterior alpha-wave can predict basic dimensions of personality, extraversion and neuroticism (Schmidtke and Heller, 2004). In this paper, we aimed to study the correlations between resting-state EEG and four popular psychological self-reported ...postprin

    Anodic-oxide-induced interdiffusion in quantum wells structure

    Get PDF
    Enhancement of interdiffusion in GaAs/AlGaAs quantum wells (QWs) due to anodic oxides was studied. Photoluminescence and diffused QW modeling were used to understand the effects of intermixing on the QW structure. The activation energy is similar to those obtained from SiO 2 cap annealed quantum well structures.published_or_final_versio

    Respiratory viral infections in exacerbation of chronic airway inflammatory diseases: novel mechanisms and insights from the upper airway epithelium.

    Get PDF
    Respiratory virus infection is one of the major sources of exacerbation of chronic airway inflammatory diseases. These exacerbations are associated with high morbidity and even mortality worldwide. The current understanding on viral-induced exacerbations is that viral infection increases airway inflammation which aggravates disease symptoms. Recent advances in in vitro air-liquid interface 3D cultures, organoid cultures and the use of novel human and animal challenge models have evoked new understandings as to the mechanisms of viral exacerbations. In this review, we will focus on recent novel findings that elucidate how respiratory viral infections alter the epithelial barrier in the airways, the upper airway microbial environment, epigenetic modifications including miRNA modulation, and other changes in immune responses throughout the upper and lower airways. First, we reviewed the prevalence of different respiratory viral infections in causing exacerbations in chronic airway inflammatory diseases. Subsequently we also summarized how recent models have expanded our appreciation of the mechanisms of viral-induced exacerbations. Further we highlighted the importance of the virome within the airway microbiome environment and its impact on subsequent bacterial infection. This review consolidates the understanding of viral induced exacerbation in chronic airway inflammatory diseases and indicates pathways that may be targeted for more effective management of chronic inflammatory diseases

    Alkaline phosphatase in nasal secretion of cattle: biochemical and molecular characterisation

    Get PDF
    BACKGROUND: Nasal secretion (NS) was investigated as a source of information regarding the mucosal and systemic immune status of cattle challenged by respiratory disease. A method for the collection of substantial volumes (~12 ml) of NS from cattle was developed to establish a reference range of analytes that are present in the NS of healthy cattle. Biochemical profiles of NS from a group of 38 healthy Holstein-Friesian cows revealed high alkaline phosphatase (AP) activity of up to 2392 IU/L. The character and source of the high activity of AP in bovine NS was investigated. RESULTS: Histochemical analysis confirmed the localization of the AP enzyme activity to epithelial cells and serous glands of the nasal respiratory mucosa. Analysis of mRNA levels from nasal mucosa by end point RT-PCR and PCR product sequencing confirmed that the AP was locally produced and is identical at the nucleotide level to the non-specific AP splice variant found in bovine liver, bone and kidney. Analysis by isoelectric focussing confirmed that AP was produced locally at a high level in nasal epithelium demonstrating that AP from nasal secretion and nasal mucosa had similar pI bands, though differing from those of the liver, kidney, bone and intestine, suggesting different post-translational modification (PTM) of AP in these tissues. CONCLUSIONS: A nasal isozyme of AP has been identified that is present at a high activity in NS, resulting from local production and showing distinctive PTM and may be active in NS as an anti-endotoxin mediator

    Evolution of Wurtzite Structured GaAs Shells Around InAs Nanowire Cores

    Get PDF
    GaAs was radially deposited on InAs nanowires by metal–organic chemical vapor deposition and resultant nanowire heterostructures were characterized by detailed electron microscopy investigations. The GaAs shells have been grown in wurtzite structure, epitaxially on the wurtzite structured InAs nanowire cores. The fundamental reason of structural evolution in terms of material nucleation and interfacial structure is given

    Polarization and temperature dependence of photoluminescence from zincblende and wurtzite InP nanowires

    No full text
    We use polarization-resolved and temperature-dependent photoluminescence of single zincblende (ZB) (cubic) and wurtzite (WZ) (hexagonal) InPnanowires to probe differences in selection rules and bandgaps between these two semiconductor nanostructures. The WZ nanowires exhibit a bandgap80meV higher in energy than the ZB nanowires. The temperature dependence of the PL is similar but not identical for the WZ and ZB nanowires. We find that ZB nanowires exhibit strong polarization parallel to the nanowire axis, while the WZ nanowires exhibit polarized emission perpendicular to the nanowire axis. This behavior is interpreted in terms of the different selection rules for WZ and ZB crystal structures.A.M., L.V.T., T.B.H., H.E.J., L.M.S., and J.M.Y.-R. acknowledge support from the Institute for Nanoscale Science and Technology of the University of Cincinnati and the National Science Foundation through Grant Nos. EEC/NUE 0532495 and ECCS 0701703. The Australian authors acknowledge support from the Australian Research Council. Y.K. acknowledges support by the Korean Science and Engineering Foundation KOSEF through Grant No. F01- 2007-000-10087-0

    Exploring the band structure of Wurtzite InAs nanowires using photocurrent spectroscopy

    Get PDF
    We use polarized photocurrent spectroscopy in a nanowire device to investigate the band structure of hexagonal Wurtzite InAs. Signatures of optical transitions between four valence bands and two conduction bands are observed which are consistent with the symmetries expected from group theory. The ground state transition energy identified from photocurrent spectra is seen to be consistent with photoluminescence emitted from a cluster of nanowires from the same growth substrate. From the energies of the observed bands we determine the spin orbit and crystal field energies in Wurtzite InAs. This information is vital to the development of crystal phase engineering of this important III-V semiconductor.ER

    The Effects of Surfaces and Surface Passivation on the Electrical Properties of Nanowires and Other Nanostructures: Time-Resolved Terahertz Spectroscopy Studies

    Get PDF
    The electrical properties of nanomaterials are strongly influenced by their surfaces, which in turn are strongly influenced by device processing and passivation procedures. Optical pump-terahertz probe spectroscopy is ideal for measuring the native properties of these materials, determining the changes induced by device processing, and studying the effectiveness of surface passivation procedures. Here we study the electronic properties of III-V nanowires and other nanomaterials in both their native and encapsulated/integrated states, which is uniquely possible with terahertz spectroscopy

    Anodic-oxide-induced intermixing in GaAs-AlGaAs quantum-well and quantum-wire structures

    Get PDF
    Anodic oxides of GaAs were shown to enhance the intermixing in GaAs-AlGaAs quantum wells (QW) during rapid thermal processing. Proximity of the anodic oxide to the QW has been shown to influence the photoluminescence (PL) energy shift due to intermixing. Anodic oxide induced intermixing has been used to enhance quantum-wire PL in the structures grown on V-groove patterned GaAs substrates. This has been attributed to enhanced lateral confinement in these structures. Injection of defects such as group-III vacancies or interstitials was considered to be driving force for the intermixing.published_or_final_versio
    corecore